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SOLUTION OF A PROBLEM CONCERNING THE
DISTRIBUTION OF GAS MOLECULES IN A LAYER
WITH MIRROR BOUNDARY CONDITIONS

A. V. Latyshev and G. V. Slobodskoi UDC §72.33

In the present work we investigate the distribution of gas molecules in a layer filled with a rarefied gas. To
solve the problem, a Boltzmann model nonstationary equation is used. The distribution function is found in
the form of an expansion in generalized eigenfunctions of the corresponding characteristic equation.

Boundary-value problems for kinetic equations arise in the solution of physical problems in such fields of
science as the kinetic theory of gas and plasma, the theory of neutron transfer, in the experimental study of
ultrasonic wave dispersion in a layer, etc.

A review of attempts undertaken to solve analytically kinetic equations for problems of a critical layer in
the theory of nuclear reactors, Couette and Poiseuille problems, and for other problems was given in {1-4]. We
note that in these investigations the authors used numerical-analytical methods.

In the present work an exact solution of the boundary-value problem is obtained for a kinetic equation in
a layer in the case when both plates bounding the gas perform harmonic oscillations (the lower plate, with an
arbitrary constant amplitude and frequency, and the upper plate, with the forced ones). Here the well-known
Case—Zweifel method [1 ] is modified. It should be noted that the madification of this method made it possible to
solve a variety of problems for model kinetic equations that for a long time have not been accurately calculable.
Among these are the problem of calculation of a temperature jump [51, the Landau problem on the behavior of an
electron plasma in a layer [6] (this problem was exactly solved by Landau for a half-space), and the problem of
strong evaporation for one-dimensional [7] and three-dimensional [8] gases. '

We note that in [9, 10] an attempt was made to develop the Case—Zweifel method for exact solution of a
half-space boundary-value problem. However, a theory constructed on the basis of a procedure of Abelian
differentials on Riemann surfaces is so complex that up to now it has not been used in solving applied problems.
For comparison we point out that the method developed in the present work allows one to construct in closed form
a function for the velocity distribution of molecules for a rarefied gas in a layer.

1. Statement of the Problem. We consider a layer of thickness d filled with a rarefied gas. The lower plate
bounding the gas lies in the plane x = 0, and the upper plate, in the plane x = d. The x axis is perpendicular to
the plates. The lower plate performs normal harmonic oscillations with frequency o and amplitude U (x = U exp
(ilwt]) relative to its equilibrium position x = 0. The upper plate performs forced harmonic oscillations with
frequency w, amplitude Uy, and initial phase g (x = Uy exp (lwt + ogP). It is required to construct the gas-
molecule distribution function.

Let us take a Boltzmann model kinetic equation with a collision operator in the form suggested by
Bhatnagar, Gross, and Crook (see, for example, [11]:

oo ‘2 , i
Lau Lt v = fexp(—p ) Y(t xn) du (1)
at ax T >

(u is the projection of the molecular velocity onto the x axis). The boundary conditions are obtained from the
following condition of the problem:
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Y 0,u)=Y(0, —u) +2Uuexp (iwt),, t>0, u>0;
Y(t,du)=Y(t, d, —pu)+2U pexp(lot+egl)y, t>0, u<0.
Considering the process to be stationary, we separate the time variable, assuming that
Y (¢, x,u) =W (x, u) exp (iw?) . (2)
Having substituted Eq. (2) into Eq. (1), we reduce the nonstationary boundary-value problem to a stationary one
9 12 2 :
iw+pu =+ Wxu)=— [ exp(—pu )W (x, 1) du . (3)
dx Vi -

The boundary conditions are rearranged to the form:

‘P(O,u)=lll(0,—,u)+2U/,t,,u>0; (4)

W(d,pu)y=W({d, ~u)+2U uexp (iwg), pu<0.

We will next consider a boundary-value problem that consists in solving Eq. (3) with boundary conditions (4).

2. Characteristic System of Equations. Eigenfunctions. To derive the characteristic system of equations,
we will use the procedure described in {12].

We separate the variables in Eq. (3) in the following manner:

W, (x, 4) = exp [— S+ z‘w)} ®, (7, 1) + exp {— =fa+ z‘w)}' ®, (7, 1) . )

Here n € C (C is the complex plane), ¢ > 0. Substituting Eq. (5) into (3) and taking the following normalization
conditions:

o

(A +w)yng(m)= [ exp(—u) D, () du  (k=1,2), (6)

— o0

we obtain a characteristic system of equations:

n-u)® (m,up)= ém; m, @+u)d,(m,p)= —\}E—’?nz . Q)

the solution of which depends substantially on whether the spectral parameter # belongs 1o the real axis or not.
We consider two cases.
1. Let & R. In this case the eigenfunctions have the form:

1 1 1
D, (n, u) = — , D, (1, u) = —py ——— . 6
1 (7, 1) ﬁn(n_#)nl(n) 2 (1, 1) ﬁnm“‘)nz(ﬂ)

Substituting Eq. (8) into Eq. (6), we obtain conditions superimposed on the eigenfunctions of discrete spectrum

8): A(z; w) =0, where

. 17 2. d
Az w)=Aggs (@) +iw, dygr (@ =1+z2— [ exp(—p") —=
g —® u -z

The dispersion function A(z; @), its zeros, and its properties were investigated in [13].
2. Let 7 € R. We find a solution of system (7) in a class of generalized functions [14]:
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D, (77,#)=L77P ny(m)+g @ —u,
V23 n—u (9)

¢z(n,#)=—LﬂP ny(m) +g (M) (n+u).

Vo g +u
Here Px~! denotes the distribution, i.e., the principal value of the Cauchy integral; d (x) is the Dirac delta-function.
Substitution of Eq. (9) into normalization condition (6) allows us to find g) 2(y). Hence, system (9) is
rearranged to the form:

1
D) (7, 1) = r*nP + exp ('72) A@w)ydm—w|n (@),
Ve -
L J (10)
- -
D, (7, 1) = {—nP + exp (ﬂz)A(n;w)é(n +u)| ny ().
VT g +u |
Suppose that
® (7, 1) = =P +exp (1) A (73 ) S (7 — ) . (11
T —u

Using equality (11), we rewrite Eq. (10) in the following form:

D, (g, 1) =P, ) n; (), Oy, u) =D, —p)ny@). (12)

" Thus, we obtain the eigenfunctions of discrete (8) and continuous (12) spectra.
3. Expansion of the Boundary-Value Problem in Eigenvectors. We will seek a solution of problem (3) and
(4) in the form of an expansion in eigenfunctions of characteristic system (7)

[\ Y (x,,q, w) = a; (ng; @) @y (g, @) €xp [— ﬂio (1 + iw)} +

d—x )
+ a, (770; w) CI)Z (770, (U) exp [— —;7-‘0—- (1 + zw)] +

+ Zz‘h (7; w) exp [— % 1+ iw)} @, (7, u) dy +

+ J 4y (r; ) exp [— X+ iw)] ®, (7, 4) dn . (13)
0

where Re(1 b zw) > 0.

Substituting the values of x = 0, x = 4 into Eq. (13) and taking into account boundary conditions (4) and

relation (11), we obtain:

I 2pyp d )
W =—=— 5 day (ng; w) ny (Mg) — ap (19> @) exp | — — (1 + iw)| ny(m)t +
43 Ho — M Mo

+ f A, (7; w) exp [—%(1 + iw)} ny, M P @, —u) - PHu)ldy +
0
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+{ Ay (; 0) ny () (D (g, ) — P (, — )1 dn, (14)

) I 2pqu d ) .
Uy pexp (ipg) = — —5——5 {exp | — — (1 + iw)| a; (g; w) ny (mg) = ay (g; @) ny ()L +
Vo No — K Mo '

oo

+{ exp [—%(1 +iw)] Ai(mo)yn, () [® (g, pu) — P, —u)ldy +

+ { Ay (75 @) ny (1) 1D (7, — ) — D (, ) | iy . (15)

Now we introduce the one-sided functions:

+ |mm, nz=0, 4+ = (A @w), 720,
nk—{o, 77(0’ Ak (7],(1})— 0’ ?7<0’ k_l72'
Using expressions (14), (15) and the fact that ®(n, u) = ®(—n, —u), we obtain a system of equations:

1 X0
—p o)+ J O, p)n;w)dy =20k,

Ve (16)
Ly w) + [ @ (g, 1) m (n; w) dy = 2U, p exp (ipg) ,
7T —
where
Mou | d . ]
P w) =-3—5 |ay (Mg @) ny (1) — a3 (> @) exp | — — (1 + iw)| ny (Me)| 3
o — H 70
Mon [ d ‘ 1
Y w)=——— |exp | - — (1 + iw)| a (ng; @) ny (19) — a3 (1g; @) np (o) | 5
o — M 7o
n (s w) = A7 (3 0) ny (1) = A7 @; =)y (= 7) + exp [% (i+ tw)] Ay (@i =) ny (1) =
~ exp {~%(1 + tw)] A3 (1 @) ng (1) 17

m (7; w) = exp [— a+ iw)] AT (1 @) ny (1) = exp [% (1+ iw)} A @ =yl (=) +

+AY (@ =)y (—n) — Ay (1) ny ().

Here and below, unless stipulated otherwise, we assume that y € R .

Taking into account Eg. (11), we rearrange system (16) to a system of singular integral equations with a
Cauchy kernel:

)= Lo 0) e ) A G 0) (i ) = 2

v T n-p
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l oo
Ly s 0) + = m 5 0) =2+ exp () A (3 0)m (43 w) = 20,1 exp (ipy)
VI Vi —oo n-—u

Then we introduce the auxiliary functions:
< d e d
N@Ew) = [ gnme)—T-, MEw)= [ nm(n;w)n—.ﬂ—z, (18)

which are piecewise analytical functions in the complex plane with a section along the real axis. Using the Sokhotskii
formulas [15] for the values of the functions N(z; w), M(z; w), and A(z; w) on the section, we have:

A (s w) ~ A (s w) = 2VT inexp (- p) ;
NY (s 0) = N™ (i3 w) = 2miun (5 ) ; (19)
Y W w)y = M (u;w) =2mium (u; w) .

By means of Egs. (18) and (19) we pass from the system of integral equations 10 a system of Riemann scalar
boundary-value problems:

AT @ 0) Ip @3 0) + N* (u 0) = 2V Unl =
=A (Wo)lp@: o)+ N (uo)—2Va Uul,
A*(,u;w) [zp(,u;w)+M+ (u; w) — 2Vr Uy p exp (ipg) | =

=A (o)l @)+ M (4 w) -2V Uypexp (ipg) ).
Let
P(z;0) = A (zw) lp (z @) + N (z; w) — 2V Uz],
Q(zw) = A(z0) Iy (w) + M(zw) ~ 2VE Uyzexp (ipg) 1.

According to the theorem of analytic continuation {15], the function P(z; ) is analytic in the complex plane, except
for a point at infinity at which it has a pole of the first order. Then, following Liouville’s theorem [15], the function
P(z; w) is the polynomial of the first order (cy + ¢|z). Considering that P(0; w) = 0, we obtain P(z; w) = ¢z,
therefore:

C]Z

N(z;cu)=2\/}z_Uz+A—(z;—w)+

27702 d .
+ 5 {a; (g @) ny (1) — a (s w) exp | — — (1 + iw)| ny (o)} -
z =7y o

Similar reasoning yields

(22

M(,u;w)=2\/J_rUzcxp(l¢0)+A—(;—w—)+

2n02 d )
5 716xp | — — (1 +iw)| a) (ng; w) ny (ng) — az (79; @) na (M) | -
z =1y 7o
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Here c) and c¢; are unknown coefficients. It is evident that the solutions obtained have poles of the first order at
finite points *7y and, in addition, have a pole of the first order at a point at infinity. However, the auxiliary
functions M(z; w) and N(z, w) prescribed by formulas (18) are piecewise analytical functions everywhere in the
complex plane with a section along the real axis. Therefore, in order to take the solutions obtained as auxiliary
functions, it is necessary and sufficient to eliminate in them singularities revealed préviously.

Taking into account the behavior of the function A(z; w) at infinity, we eliminate the pole at a point at
infinity in the functions M(z; w) and N(z; @) and assume that ¢; = —2Vz Uwi, ¢; = =2V Ugwi exp (ipg). It is easy
to see that now M(z; w) ~1/z and N(z; w) ~1/z. 1t remains to eliminate the poles of the first order at finite points
*7¢ in the functions M (z; w) and N(z; w). In order to eliminate the poles with the properties of the functions M(z;
w), N(z; w), and A(z; w) taken into account, it is necessary and sufficient to eliminate the pole at point 79, and
then the pole at point —7q is eliminated automatically. Having expanded the function A(z; w) into series in the
vicinity of point n¢ (we note that the function A(z; w) is analytic at point 77p and therefore we obtain a Taylor
series) and allowing for the behavior of M(z; w) in the vicinity of this point, we write a system of two linear
equations:

d ) o
a; (Mo @) ny (mg) —exp | — — (1 +iw)| ay (ngs w) ny () = — ————,
o j'cig.f (770)
d ) €2
exp [— — (1 +iw)| a; (g5 @) ny (Mg) — ap (Mg; w) ny () = — = .
Mo Acig.t (10)

Solution of this system gives the coefficients for the discrete spectrum:

B cpexp [—d (1 + iw)/ngl— ¢
A (o) 1y (mg) (1 = exp [— 2d (1 + iw)/ny 1)

a; (mg; w)
(20)
_ cp—crexp l—d (1 + iw)/ngl
A (o) ny (o) (1 — exp [— 2d (1 + iw)/741)

az (Mg; @)

Now we find the coefficients for the continuous spectrum. To do this, we use the Sokhotskii formulas (18) and
obtain a system of linear equations:

1 M exp (- ) m s w) = — ey exp (= i)
VI AT o) A () ’ VAT oy AT @ o)

n(u; w) = —

Here the functions n(u; w) and m(u; w) are prescribed by relations (17).
Having solved this system, we write expressions for the coefficients of the continuous spectrum:

_ (c1 = cppmexp (= 1)
VE AT (1;0) AT (s w) ny () (1 = exp [— 2d (L + iw) /7))

A} (73 w)
(21)

_ (¢ exp [— d (1 + iw)/n1— cy)nexp (— n°)

VI AT ) AT ) ng (1) (1 —exp [—2d (1 + @)/ )

+
Ay (75 w)

Thus, all the coefficients of expansion are found in explicit form and are prescribed by formulas (21) and
(22). The fact that the expansion is a solution of the initial boundary-value problem is verified immediately. The
uniqueness of this solution follows from the impossibility of nontrivial expansion of zero in the eigenvectors of the
characteristic equation. Consequently, the solution of the initial boundary-value problem in the form of expansion
(13) is established.
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4. Analysis of Results. In order to analyze the resuits obtained, we consider the following limiting cases.
1. Let w << 1. We expand the dispersion function A(z; w) into a Laurent series in the vicinity of a point at
infinity:

2 2
z z

A(z;w)=———1——+iw+o[~l—), |z] = oo (22)

From formula (22) we find the eigenvalues of the discrete spectrum:

770=j'_ .
2Vo

Thus, at small w the eigenvalues of the discrete spectrum tend to infinity.
2. Let Ingl << d, w<< 1, 1 << x. In this case (outside the Knudsen layer) only a discrete mode remains.
By virtue of rapid exponential decay, the continuous mode disappears. Expansion (13) has the form

W (x, u, w) = a; (7p; w) Py (779, u) exp [— % 1+ iw)} .

Suppose that

:ﬁi-—

§ exp (— u®) ay (1; w) @, (7, ) exp [— =+ iw)} du
- 00 770

With allowance for the boundary conditions we obtain

2iUw exp {— ";‘6 (1+ ia))}

8=~ . lhe (7o) — 11
n }'c(”()) c \70

Taking into account the behavior of the function A(z; w) at small w, we writc an expression for the relative
concentration

_Vexpl-xVw (1 — @)l (1 = w) sin (x V& (1 + w)) = (1 + w) cos (x Vo (1 + w))].
2Vw

Red, =
3. Let 1 <<d = Ingl, w<< 1, 1<<x, (d —x) >> 1. Expansion (13) takes the form

W (x, 4, w) = ay (g; @) {<D1 (s ) exp I:— ,7—2 (I + iw)} +

d— x .
+ a®; (19, u) exp [— TS (1+ lw)}} ,

where

_ a1y (g5 @) _m (M) exp | — d (1 + iw)
T ay (mgyw) "~ ng (o) P 7o )

It is evident that the coefficient « characterizes the reflected wave. In this casc &, is of the form

2]

f exp (- p°) ay (g @) Py (1, #) €Xp [— 0+ iw)} du +
Mo

ﬁ1~
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L J exp (= i) @y (g w) @, (mg> 1) XD {— d—x 1+ iw)} du .

Consequently:
exp | — = (1 + iw)| + exp | — 2""_"‘(1 + iw)
2iUw 7o 0
n= = Heig.f (m0) — 11
Aeig.f (o)

exp [— 727—(;’(1 + iw)] — 1
Therefore, the expression for the relative concentration will take the following form:

rr

(riay — 1+ (r267)

Red, = 5 {al +ry (ayay + b1by) (ay — 1) + (bya, — azb)) bZ]}.

Here
a=cos(xvVo [1 +wl); b =sin(xVo [1+wl); r,=exp [—xVo (1 —w)];

ay=cos 2dVo [1 +w]); b, =sin(2d Vo [1 +w]); rp,=exp [2d Vo (1 —w)].

Thus, in the present work a method is developed that allows one to obtain accurate solutions of boundary-
value problems in a layer for nonstationary model kinetic equations with mirror boundary conditions.

The separation of variables leads to a characteristic system. The eigenfunctions for the discrete and
continuous spectra of the characteristic system are found. An expansion of the solution of the initial boundary-value
problem in eigenfunctions is established. The unknown coefficients of the expansion are obtained in explicit form.

Problems with boundary conditions (4) can be used in solving the most diverse problems of the kinetic
theory of gas and plasma, in the theory of neutron and electron transfer, in theoretical astrophysics, etc.

The present work was carried out with partial financial support from the Russian Fund for Fundamental
Scientific Research (project code 99-01-00336).
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