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S O L U T I O N  O F  A P R O B L E M  C O N C E R N I N G  T H E  

D I S T R I B U T I O N  O F  G A S  M O L E C U L E S  I N  A L A Y E R  

W I T H  M I R R O R  B O U N D A R Y  C O N D I T I O N S  

A. V. La tyshev  and G. V. Slobodskoi UDC 572.33 

In the present work we investigate the distribution of gas molecules in a layer filled with a rarefied gas. To 

solve the problem, a Bol tzmann model  nonstationary equation is used. The distribution function is f ound  in 

the f o rm  of  an expansion in generalized eigenfunctions of  the corresponding characteristic equation. 

Boundary-va lue  problems for kinetic equations arise in the solution of physical problems in such fields of 

science as the  kinetic theory  of gas and plasma, the theory of neutron transfer,  in the experimental  s tudy of 
ultrasonic wave dispersion in a layer, etc. 

A review of at tempts undertaken to solve analytically kinetic equations for problems of a critical layer  in 

the theory of nuclear  reactors,  Couette and  Poiseuille problems, and for other  problems was given in [1-4]. We 

note that in these  investigations the authors  used numerical-analytical methods. 

In the  present  work an exact solution of the boundary-value problem is obtained for a kinetic equation in 

a layer in the  case when both plates bounding the gas perform harmonic oscillations (the lower plate, with an 

arbi t rary cons tan t  ampli tude and frequency,  and the upper plate, with the forced ones). Here  the well-known 

Case -Zwei fe l  method  [1 1 is modified. It should be noted that the modification of this method made it possible to 

solve a var ie ty  of problems for model kinetic equations that for a long time have not been accurately calculable. 

Among these  are  the problem of calculation of a temperature jump [5 ], the Landau problem on the behavior of an 

electron plasma in a layer  [6 ] (this problem was exactly solved by Landau for a half-space), and the problem of 

strong evaporat ion for one-dimensional  [7 ] and  three-dimensional I8 1 gases. 

We note  that in [9, 10l an at tempt was made to develop the Case -Zwei fe l  method for exact solution of a 

half-space b o u n d a r y - v a l u e  problem. However ,  a theory const ructed  on the basis of a procedure  of Abelian 

differentials on Riemann surfaces is so complex that up to now it has not been used in solving applied problems. 

For comparison we point out that the method developed in the present work allows one to construct in closed form 

a function for  the velocity distribution of molecules for a rarefied gas in a layer. 

1. S ta t ement  of the Problem. We consider  a layer of thickness d filled with a rarefied gas. The  lower plate 

bounding the  gas lies in the plane x -- 0, and the upper plate, in the plane x = d. The x axis is perpendicular to 

the plates. T h e  lower plate performs normal harmonic oscillations with frequency 09 and ampli tude U (x = U exp 

(i[a~t]) re la t ive  to its equilibrium position x = 0. The upper plate performs forced harmonic oscillations with 

frequency o9, ampli tude Ud, and initial phase TO (x = U d exp (i[tot + ~Oo])). It is required to construct the gas- 

molecule dis t r ibut ion function. 

Let  us take a Bol tzmann model  kinet ic  equation with a collision operator  in the form suggested by 

Bhatnagar,  Gross ,  and Crook (see, for example,  [11 ]): 

0 +be__  + I Y ( t , x , p )  = - -  e x p ( - / ~  ) r ( t , x ,  bt')dp" (1) 
Ox v ~  -| 

is the project ion of the molecular velocity onto the x axis). The  boundary  conditions are obtained from the 

following condi t ion of the problem: 
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Y(t, 0 , ~ )  = Y(t, 0 , - / z )  +2U/zexp( ieo t ) ,  t > 0 ,  /~ > O; 

Y ( t , d , [ ~ )  = Y ( t , d , - - 1 ~ ) + 2 U d # e x p ( i  [o) t+~ool) ,  t > 0 ,  ~ < 0 .  

Considering the process to be s tat ionary,  we separate the time variable, assuming that  

Y (t, x, ~) = qJ (x,/~) exp (io)t).  (2) 

Having substituted Eq. (2) into Eq. (1), we reduce the nonstationary boundary-value problem to a stationary one 

( o )  , i c o + ~ - - +  1 tF(x,/~) = - -  e x p ( - ~ '  ) U d ( x , ~ ) d ~  . (3) 
Ox v ~  -~o 

The boundary  conditions are rear ranged to the form: 

q~(0 ,~ )  = q J ( 0 , - ~ )  + 2U~,  ~ > 0 ;  (4) 

qs (d,  t~) = qJ (d, - ~)  + 2Udl~ exp (ioJ0), /~ < 0 .  

We will next consider a boundary-value problem that consists in solving Eq. (3) with boundary conditions (4). 

2. Characteristic System of Equations. Eigenfunctions. To derive the characteristic system of equations, 

we will use the procedure described in [12 ]. 
We separate the variables in Eq. (3) in the following manner: 

~G (x, ~,) = exp - ~- ~ (1 + i~) ,I, 2 (,7, ~) .  (5) 

Here r/ ~ C (C is the complex p lane) , / ,  > 0. Substituting Eq. (5) into (3) and taking the following normalization 

conditions: 

(l + ico) nk (7) = .~ exp ( -  2 )  % (7, ~) d~ 
- - O 0  

we obtain a characteristic system of equations: 

(/, = 1, 2 ) ,  (6) 

1 1 
(7 - a )  "1 (7, ~,) = - ~  ~-~ (~), (7 + . )  * 2  (7, a )  = - ~  ~ 2  ('7), 

V ~  
(7) 

the solution of which depends substantial ly on whether the spectral parameter r/ belongs to the real axis or not. 

We consider two cases. 
1. Let r/ (~ R. In this case the eigenfunctions have the form: 

_1__1 1 1 1 
*1 (r/, kr = V~ r] ~ ( r ]  -- ~) nl (r]), *Z (r], ~) = --v~. ~] - - ( t ]  + kt) n2 Q])" (8) 

Substituting Eq. (8) into Eq. (6), we obtain conditions superimposed on the eigenfunctions of discrete spectrum 

(8): A(z; oJ) -- 0, where 

A (z; (..o) = ~'eig.f (z) + i(.o, ;teig.f (z) = 1 + z 1 7 e x p ( - ~ 2 )  d/~ 
v ~ - o o  /~ - z  

The dispersion function A(z; oJ), its zeros, and its properties were investigated in [13 ]. 

2. Let ~/ ~ R. We find a solution of system (7) in a class of generalized functions [14]: 
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1 1 
- -  r / P  - -  

O~ (,7,/~) = 4 Y  r/ - , .  

1 1 
q'z (7,  ~ )  = ~ P  - -  

v~- r /+ /~  

n~ (,7) + g~ ('7) ~ ('7 - ~ ) ,  

n2 (,7) + g~ (,7) ,s (,7 + ~ ) .  

(9) 

Here Px-1 denotes the distribution, i.e., the principal value of the Cauchy integral; ~ (x) is the Dirac delta-function. 
Substitution of Eq. (9) into normalization condition (6) allows us to find gl,2(r/) �9 Hence, system (9) is 

~1 ( r / , /x)= [~_~_jr r] P 1 
r ] - / 2  

r (r],/2) = [ ~ _  riP 1 ..... 
r /+ /x  

rearranged to the form: 

+ exp (r/z) A (r/; w) 6 Q? - /~) ]  

+ exp (r/2) A 01; w) 6 (r/ +/~)] 

.1 ('7), 

n z  ( ,7) .  

(10) 

Suppose that 

@ (r/,/~) = 1 ~  r/P 1 + exp (r/z) A (r/; w) 6 (r/ - p ) .  (11) 
v~- r / - / ~  

Using equality (11), we rewrite Eq. (10) in the following form: 

~1 (r/,/~) = @ (r/,/~) n I (r/), O 2 (r/,/~) = �9 (r/, - /~ )  n 2 (r/). (12) 

Thus,  we obtain the eigenfunctions of discrete (8) and continuous (12) spectra. 
3. Expansion of the Boundary-Value Problem in Eigenvectors. We will seek a solution of problem (3) and 

(4) in the form of an expansion in eigenfunctions of characteristic system (7) 

Ix ] W ( x , / ~ , ~ o ) = a  l ( n o ; w ) ~ l  (r/o,c~ - ~ o ( 1  + i w )  +" 

+ a z ( r / o ; W ) * z ( r / o , w ) e x p  [ d - x ( 1  + iw)] + 
L r/o J 

7 I X(l +i~176 ~)Ql, lt) dr~+ + A 1 (r/; ~o) exp - ~- 
0 

+ 7A2(r/;~ exp I d-x  (1 + i~o)] ~2(r / ,k t )  dr/ (13) 
0 - ~ ' 

n 1 + i w  ^ w h e r e K e ( _ ~ )  > o .  
qo 

Substituting the values of x = 0, x = d into Eq. (13) and taking into account boundary conditions (4) and 
relation (11), we obtain: 

2 U ~  = - -  - -  
1 2r/~ t 

2 2 al Q/0; o9) n! (r/0) - a 2 (r/0; co) exp ] v~- r/o - /~  

+ 7  A2(r / ;w)exp  I - d (  1 
o 

- - - ( l + i , ~ )  n 2 ( % )  
r/o 

+ i,o) 1 %  (,7) lq, (,7, - ~,) - cp (,7,/,) t dr~ + 

+ 
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+ 7 A1 (r/; co) n 1 (r/) [qb (r/, kt) -- (I~ (r/, -- kt) ] dr/ ,  
0 

(14) 

2Ua I* exp (i~o0) = - -  - -  1 2r/~ ~ 2 {exp 

v ~ r / o  - 

d (1 + /co)] 

r/0 J 
al (r/o; co) nl (r/O) -- a2 (r/O; o9) n 2 (r/O)}. 

[ "ld (1 + ico)l A 1 (r/; co) n 2 (r/) [ *  (r/, k~) - * (r/, - k~)] dr/ + + exp - 
0 

+ 

+ 7 A2 (r/; co) n2 (r/) [O (r/, -- At) -- �9 (r/, kt) I dr/.  
0 

(15) 

Now we in t roduce  the  o n e - s i d e d  functions:  

+ { n k ( r / ) ,  r / - > 0 ,  + {Ak(r / ; co) ,  r/ -> 0 
nk = 0 ,  r/ < 0  Ak (r/; co) = ' /~ = 1 2 , 0 ,  r / < 0 ,  ' " 

Using express ions  (14),  (15) a n d  the  fact that  @(r/, ~) = qb(--r/, --kt), we obtain a sys t em of equat ions:  

- -  ~o ~ ;  co) + @ (r/, p )  n (r/; co) dr/ = 2Up, 
-oo 

! 

_.L.." ~ (/~; ~ )  + j �9 (r/, ~u) m (r/; co) dr/ = 2Ud/~ exp (i~oo), 
v ~  -oo 

( 1 6 )  

where 

2 2 al (r/0;co) nl ( r / 0 ) -  a2 ( r /o ;C~  - - - ( 1  + ico) n 2(r/0) ; 
r/o - k t r/o 

I 1 ~ o Q ~ ; c o ) -  2r/~ exp - - - ( 1  + ico) a 1 (r/o;co) nl ( r / o ) -  a 2 ( r / o ; c ~  2(r/0 ) �9 2 2 
r/o - / ~  r/o 

n(r/;co)=A;(r/;co)nl(r/)-A?(co;-r/)nl(-r/)+exp [d(l +ico)l A2(co;-r/) 

d ( l  + /co)] + + - exp - ~- A 2 (r/; co) n 2 (r/) ; 

+ 
n 2 (-- r/) -- 

(17) 

d (  1 m (r/;  co)  = e x p  - ~- 

+ + 

+ (co; r/) n 2 (-- r/) -- A 2 (r/;co) n 2 (r/). + A 2 - 

Here  and  below, unless  s t ipu la ted  o therwise ,  we assume that  kt ~ R .  
Tak ing  into account  Eq. (11) ,  we rea r range  sys tem (16) to a sys tem of s ingular  integral  equat ions  with a 

Cauchy kernel :  

1 1 dr/ 
J r/n (r/; co) - - ~ ,  (u; ~o) + 

v-k- v 'y -o~ ~ - / ~  
+ exp ~ 2 )  A (u; co) n Oz; co) = 2U/~ , 
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1 ye(,u;co)+__l_l .~ r/m(r/;co) dr/ 
4-s d y - o o  r /_ /~  

+ exp (,u 2) A (~; 02)rn (/a; co) = 2Ud/a exp (i~o0). 

Then we in t roduce  the auxi l iary  functions:  

N(z ;o2)  = ? r/n(r/;co) dr] M ( z ; c o )  = .~ r/m ( r / ;a  0 dr/ (18) 
--oo El - -  Z ~ --oo r/ - -  Z ' 

which are piecewise analyt ica l  functions in the complex plane with a section along the real axis. Using the Sokhotskii  

formulas 115] for the values of the functions N(z;  co), M(z ;  02), and  A(z; co) on the section, we have: 

A + ( U ; c o ) - A - ~ u ; 0 2 )  = 2 ~ e x p ( - k t  2);  

N + (/.t; co) - N -  ~ ;  co) = 2.~i~n ~ ;  co) ; (19) 

M + (/.t; 02) - M -  (kt; 02) = 2zci/xm (/z; co). 

By means  of Eqs. (18) and  (19) we pass from the sys t em of integral equat ions to a sys tem of R i emann  scalar  
boundary-va lue  problems: 

A + ~ ;  co) [~o (~; o2) + N + (/.t; co) - 2 v~- U/a ] = 

= A  (/z; co) [~o ~ ;  co) + N ( p ; c o ) - 2 v % - U / ~ ] ,  

A* (~; co) lye ~ ;  co) + M + (U; 02) - 2 ~ Ud/~ exp (i~o0) ] = 

= A -  Oa; o2) [ye O.t; 6o) + M -  (/.t; 02) - 2 v ~  Udlt  exp (i~o0) 1. 

Let 

P (z; 02) = A (z; 02) 1~ (z; 02) + N (z; co) - 2 ~ Uz I, 

Q ( z ;  co) = A (z ;  co) lye ( z ;  co) + M ( z ;  co) - 2 ~ U d z e x p  (i~o0) I .  

According to the theorem of analyt ic  cont inuat ion [ 15 ], the  funct ion P(z; 02) is analyt ic  in the complex plane, except 

for a point at inf ini ty at which it has a pole of the first order .  Then ,  following Liouville's theorem [15 ], the funct ion 

P(z; co) is the  polynomial  of the first order  (c o + ClZ). Cons ider ing  tha t  P(0;  co) = 0, we obtain P(z;  co) = czz, 

therefore: 

N(z ;co)  = 2V% Uz + - -  
ClZ 

A (z; co) 
+ 

+ 2-------~ al (r/o; w) n 1 (r/o) - a2 (r/o; w) exp - (1 + ico) n2 (r/o) �9 
z -- r/O 

Similar reasoning yields 

+ - -  2r/0z 
2 2 

z -- r/0 

M (p; co) = 2 v ~  Uz exp (i~o0) + - -  
C2Z 

A (z; co) 
+ 

exp - (1 + io) )  al  (r/o;co) n l ( r / o ) - a z ( r / o ; w ) n  2(r/o) �9 
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Here  Cl and c 2 are unknown coefficients. It is evident that the solutions obtained have poles of the first order  at 

finite points ---r/0 and ,  in addition, have a pole of the first order  at a point at infinity. However, the auxil iary 

functions M(z;  w) and  N ( z ,  w) prescribed by formulas (18) are piecewise analytical functions everywhere in the 

complex plane with a section along the real axis. Therefore ,  in order  to take the solutions obtained as auxil iary 

functions, it is necessary  and  sufficient to eliminate in them singularities revealed pr6viously. 

Taking into account  the behavior of the function A(z; w) at infinity, we eliminate the pole at a point at 

infinity in the functions M ( z ;  w) and N(z;  w) and assume that Cl = - 2 v ~ U w i ,  c2 = - 2 v ~ U d w i  exp (i9o0). It is easy 

to see that now M(z;  w) - 1 / z  and N(z; o9) - 1 /z .  It remains to eliminate the poles of the first order at finite points 

---r/0 in the functions M ( z ;  w) and N(z;  w). In order  to eliminate the poles with the properties of the functions M(z;  

co), N(z; w) ,  and A(z; o9) taken into account, it is necessary and sufficient to eliminate the pole at point r/0, and 

then the pole at point - 7 0  is eliminated automatically. Having expanded the function A(z; w) into series in the 

vicinity of point r/o (we note  that the function A(z; co) is analytic at point r/0 and therefore  we obtain a Tay lo r  

series) and allowing for  the behavior of M(z; co) in the vicinity of this point, we write a system of two l inear 

equations: 

al (70; w) n I (r/o) - exp - - - ( 1  + i o n )  a 2 ( r / 0 ; w )  nz(r /0 )  = ' , 
r/0 J'eig.f (r/0) 

d ] c 2 
exp - ~ o ( 1  + i w )  a l ( r /o ;w)  nl ( r / o ) - a z ( r / o ; w ) n  2 ( r / o ) =  , �9 

)]'cig. f (r/O) 

Solution of this sys tem gives the coefficients for the discrete spectrum: 

a 1 (%; ~o) = 
C 2 exp 1-- d (1 + ico)/r/o ] - c I 

2' c (r/0) n I (r/o) (1 - exp l -  2d (1 + i~o)/r/o l) 

C 2 -- C 1 exp [-- d (I + iw) /q0]  

az (~0; w) = 2, c (r/0) n2 (70) (1 - exp [ -  2d (1 + iw) /qo]  ) 

( 2 0 )  

Now we find the coefficients for the continuous spectrum. To do this, we use the Sokhotskii formulas (18) and 

obtain a system of l inear  equations: 

c 2/~ exp ( - / x  2) 

r A + (~; ,o) A -  r ~o) 

c 1/x exp ( -  k~ 2) 
n (,u; co )  = - A +  , m (U; oa) = - 

v ~ -  ~ ;  ~,) A -  (~; o~) 

Here  the functions n ~ ;  w) and rn(/~; w) are prescribed by relations (17). 

Having solved this system, we write expressions for the coefficients of the continuous spectrum: 

A[ (7; = 
(c 1 - c2) ~ exp ( -  r/z) 

V~ A + (r/; w) A -  (q; w) n~ (q) (1 - exp [ -  2d (1 + iw) / r / l )  ' 

@1 exp [ -  d (1 + iw)/r / I  - -  c2) r/ exp (-- z )  

A + (q; w) A -  (q; 6o) n~ (r/) (1 - exp l -  2d (1 + tw) /q  I) 

(21) 

+ 
A2 (7; oJ) = 

Thus ,  all the coefficients of expansion are found in explicit form and are prescribed by formulas (21) and 

(22). The  fact that  the expansion is a solution of the initial boundary-value problem is verified immediately.  The  

uniqueness of this solut ion follows from the impossibility of nontrivial expansion of zero in the eigenvectors of the 

characteristic equation. Consequently,  the solution of the initial boundary-value problem in the form of expansion 

(13) is established. 
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4. Analysis  of Results.  In order  to analyze the results obtained,  we consider the following limiting cases. 

1. Let  co << 1. We expand the dispersion function A(z; co) into a Laurenl  series in the vicinity of a point at 

infinity: 

2z 2 [ z" ) ' " 

From formula  (22) we find the eigenvalues of the discrete spectrum: 

i - 1  
r/0 = + _ _ - -  2V~- 

Thus, at small w the eigenvalues of the discrete spectrum tend to infinity. 

2. Let Ir/ol << d, o9 << 1, 1 << x. [n this case (outside the Knudsen layer) only a discrete mode remains.  

By virlue of rapid exponential  decay, the continuous mode disappears. Expansion (13) has the form 

x (1 +iog)] tlS (x, ~, co) = a I (r/o; co) Cj (r/O, ~) exp - -~o 

Suppose that 

1 ? exp(-kt2) ai(r/o;OJ)eP~(r/O,/~)exp [- x-Y--(1 +iw)] db~. c3 n = d-~ - oo r/ O 

With allowance for the boundary  conditions we obtain 

x (l+io9)] 
2iuo9 e~p - ~o la'~ (r/o) - l i .  

~" = - a'~ (r/o) 

Taking into account the behavior of the function A(z; o9) at small o9, we write an expression for the relative 

concentrat ion 

R e  O n = - U.exp l -  x f ~  (1 - co)] [(1 - w) sin (x v ~  (1 + co)) - (1 + co) cos (x ~ (1 + co)) 1. 
2v%- 

3. Let 1 << d <-- Ir/ol, co << 1, 1 << x, (d - x) >> 1. Expansion (13) takes the form 

t [ W (x,/~, o9) = a 1 (r/o; co) q~l (r/0; ~) exp - ~oo 

+ a ~ 2 ( r / o ; / ~ ) e x p [  d - x ( 1  +iw)]} ' ~ o  

where 

a 2 (r/O; w) n I (r/O) 
a 1 (r/O; ~o) - n 2 (r/o) exp 

d (i + /co)] 
] r/o 

It is evident  that  the coefficient a character izes  the reflected wave. In this case 3 n is of the form 

O n =  1 ~ - ~  ~ exp (-  t~2) al (rl~ og) ~l (r/~ /~) exp I - x ( 1  + i~)l dl~ 
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Consequently: 

+ 1 
J exp ( - / z )  a2 (7]0; a)) t:I3 2 (r]0 ,/,t) exp 

vr-~- _oo 
_ d - - x  (1 + i09)1 d~.  

~10 

2iUw 
c%, - , ( ~ o )  - 1 l 

2eig.f (riO) D]'eig'f 

x (1 exp - ~0 +i09)] + e x p  [ -  2 d - X ( l  + i 0 9 ) ] ~ 1 o  

2d(1 +i09)] - 1 exp - ~0 

Therefore, the expression for the relative concentration will take the following form: 

Re ~n 
r 1 r 2 
1) 2 "k- (rzb2) z L ~al + r2 [(alaz + bib2) (a2 - 1) + (b2a I - a2bl) b2] ~ . j  

(rlaz 

H ere 
a 1 = cos ( x v ~  [1 + w ] ) ;  b 1 = sin (xv%- [1 +091); rl = e x p  [ -  x V ~ ( 1  -09)1 ;  

a 2=cos(2dv ' -w- [1 + w ] ) ;  b 2 = s i n ( 2 d v ' ~  [1 + c o l ) ;  r 2 =  exp [2dV-~-(1 - c o ) ] .  

Thus, in the present work a method is developed that allows one to obtain accurate solutions of boundary- 
value problems in a layer for nonstationary model kinetic equations with mirror boundary conditions. 

The separation of variables leads to a characteristic system. The eigenfunctions for the discrete and 
continuous spectra of the characteristic system are found. An expansion of the solution of the initial boundary-value 
problem in eigenfunctions is established. The unknown coefficients of the expansion are obtained in explicit form. 

Problems with boundary conditions (4) can be used in solving the most diverse problems of the kinetic 
theory of gas and plasma, in the theory of neutron and electron transfer, in theoretical astrophysics, etc. 

The present work was carried out with partial financial support from the Russian Fund for Fundamental 

Scientific Research (project code 99-01-00336). 
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